731 research outputs found

    Eye–hand coordination during manual object transport with the affected and less affected hand in adolescents with hemiparetic cerebral palsy

    Get PDF
    In the present study we investigated eye–hand coordination in adolescents with hemiparetic cerebral palsy (CP) and neurologically healthy controls. Using an object prehension and transport task, we addressed two hypotheses, motivated by the question whether early brain damage and the ensuing limitations of motor activity lead to general and/or effector-specific effects in visuomotor control of manual actions. We hypothesized that individuals with hemiparetic CP would more closely visually monitor actions with their affected hand, compared to both their less affected hand and to control participants without a sensorimotor impairment. A second, more speculative hypothesis was that, in relation to previously established deficits in prospective action control in individuals with hemiparetic CP, gaze patterns might be less anticipatory in general, also during actions performed with the less affected hand. Analysis of the gaze and hand movement data revealed the increased visual monitoring of participants with CP when using their affected hand at the beginning as well as during object transport. In contrast, no general deficit in anticipatory gaze control in the participants with hemiparetic CP could be observed. Collectively, these findings are the first to directly show that individuals with hemiparetic CP adapt eye–hand coordination to the specific constraints of the moving limb, presumably to compensate for sensorimotor deficits

    Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake.

    Get PDF
    During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent. Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Prevention of tick bites: an evaluation of a smartphone app.

    Get PDF
    Lyme borreliosis (LB) is the most common reported tick-borne infection in Europe, and involves transmission of Borrelia by ticks. As long as a vaccine is not available and effective measures for controlling tick populations are insufficient, LB control is focused on preventive measures to avoid tick bites. To inform citizens about the risk of ticks, motivate them to check for tick bites, and encourage them to remove any attached tick as quickly as possible, a mobile app called 'Tekenbeet' (Dutch for 'tick bite') was developed and released. The aim of this study was to evaluate the usage and user satisfaction of the 'Tekenbeet' app and to investigate whether it affects users' knowledge, perceived severity, perceived susceptibility, self-efficacy, response efficacy, current behavior and intention to comply with preventive measures

    Sequential gene promoter methylation during HPV-induced cervical carcinogenesis

    Get PDF
    We aimed to link DNA methylation events occurring in cervical carcinomas to distinct stages of HPV-induced transformation. Methylation specific-multiplex ligation-dependent probe amplification (MS-MLPA) analysis of cervical carcinomas revealed promoter methylation of 12 out of 29 tumour suppressor genes analysed, with MGMT being most frequently methylated (92%). Subsequently, consecutive stages of HPV16/18-transfected keratinocytes (n=11), ranging from pre-immortal to anchorage-independent phenotypes, were analysed by MS-MLPA. Whereas no methylation was evident in pre-immortal cells, progression to anchorage independence was associated with an accumulation of frequent methylation events involving five genes, all of which were also methylated in cervical carcinomas. TP73 and ESR1 methylation became manifest in early immortal cells followed by RARβ and DAPK1 methylation in late immortal passages. Complementary methylation of MGMT was related to anchorage independence. Analysis of nine cervical cancer cell lines, representing the tumorigenic phenotype, revealed in addition to these five genes frequent methylation of CADM1, CDH13 and CHFR. In conclusion, eight recurrent methylation events in cervical carcinomas could be assigned to different stages of HPV-induced transformation. Hence, our in vitro model system provides a valuable tool to further functionally address the epigenetic alterations that are common in cervical carcinomas

    Investigation of Performance and Cavitation Treatment in a Kaplan Hydro Turbine

    Get PDF
    Cavitation is a phenomenon that occurs in various turbomachinery applications causing drawbacks on the. Some of these downsides are damaging the components of the system, generating noise and vibration, and loss of the turbine efficiency over time. Thus, it is imperative to address issue of cavitation to increase the life span of the equipment in addition to improve the system performance. This thesis introduces a method used to mitigate the cavitation phenomenon in a 3-inch Kaplan hydro turbine via injecting air at the leading edge of the rotor blades. The study is based on modeling the turbine using Computational Fluid Dynamics (CFD) software as well as carrying out experimental tests. The simulations were conducted at different air injection pressures over a spectrum of rotational speeds using Large Eddy Simulation (LES) for turbulence and volume of fluid for multiphase interactions: water, vapor water and air. The cavitation behavior was observed first without aeration, then followed by air injection simulations to investigate the effect of aeration. Each case was simulated for 12 cycles at rotational speeds of 1000, 2000, 3000, 4000, and 5000 rpm. The Vapor Volume Fraction (VVF) and the output mechanical power were monitored throughout the simulations. The data acquired from the simulations were compared to the experimental results for verifications. It was observed that the cavitation was mitigated in both the computer simulations and the experiment testing reaching up to 49.7% as an average reduction, while the output power was reduced by 6.6%

    Groundwater resources in the Indo-Gangetic Basin : resilience to climate change and abstraction

    Get PDF
    Groundwater within the Indo‐Gangetic Basin (IGB) alluvial aquifer system forms one of the world’s most important and heavily exploited reservoirs of freshwater. In this study we have examined the groundwater system through the lens of its resilience to change – both from the impact of climate change and increases in abstraction. This has led to the development of a series of new maps for the IGB aquifer, building on existing datasets held in Pakistan, India, Nepal and Bangladesh, a review of approximately 500 reports and papers, and three targeted field studies on under‐researched topics within the region. The major findings of the study are described below. The IGB groundwater system 1. The IGB alluvial aquifer system comprises a large volume of heterogeneous unconsolidated sediment in a complex environmental setting. Annual rainfall varies from 2000mm in the Bengal basin, and the system is dissected by the major river systems of the Indus, Ganges and Brahmaputra. The groundwater system has been modified by the introduction of large scale canal irrigation schemes using water from the Indus and Ganges since the 19th and early 20th centuries. 2. High yielding tubewells can be sustained in most parts of the alluvial aquifer system; permeability is often in the range of 10 – 60 m/d and specific yield (the drainable porosity) varies from 5 – 20%, making it highly productive. 3. High salinity and elevated arsenic concentrations exist in parts of the basin limiting the usefulness of the groundwater resource. Saline water predominates in the Lower Indus, and near to the coast in the Bengal Delta, and is also a major concern in the Middle Ganges and Upper Ganges (covering much of the Punjab Region in Pakistan, southern Punjab, Haryana and parts of Uttar Pradesh in India). Arsenic severely impacts the development of shallow groundwater in the fluvial influenced deltaic area of the Bengal Basin. 4. Recharge to the IGB aquifer system is substantial and dynamic, controlled by monsoonal rainfall, leakage from canals, river infiltration and irrigation returns. Recharge from rainfall can occur even with low annual rainfall (350 mm) and appears to dominate where rainfall is higher (> 750 mm). Canal leakage is also highly significant and constitutes the largest proportion of groundwater recharge in the drier parts of the aquifer, partially mitigating the effects of abstraction on groundwater storage. 5. Deep groundwater (>150 m) in the Bengal basin has strategic value for water supply, health and economic development. Excessive abstraction poses a greater threat to the quality of this deep groundwater than climate change. Heavy pumping may induce the downward migration of arsenic in parts of Bangladesh, and of saline water in coastal regions, but field evidence and modelling both suggest that deep groundwater abstraction for public water supply in southern Bangladesh is in general secure against widespread ingress of arsenic and saline water for at least 100 years
    corecore